Latest News

New transformers may lead to flexible energy storage systems

Sunday, Mar 27, 2016,14:14 IST By Metrovaartha A A A

Washington | Scientists have developed a way to make a magnetic material that may lead to smaller, lighter high-frequency transformers, needed for more flexible energy storage systems and widespread adoption of renewable energy.

Transportable energy storage and power conversion systems, which can fit inside a single semi-trailer, could make it cost effective to rapidly install solar, wind and geothermal energy systems in even the most remote locations.

Such modular systems could be deployed quickly to multiple sites with much less assembly and validation time, said Todd Monson, researcher at Sandia National Laboratories in US. Sandia manufactures iron nitride powders by ball-milling iron powders in liquid nitrogen and then ammonia.

The iron nitride powders are then consolidated through a low-temperature field-assisted sintering technique (FAST) that forms a solid material from loose powders through the application of heat and sometimes pressure. The FAST manufacturing method enables the creation of transformer cores from raw starting materials in minutes, without decomposing the required iron nitrides, as could happen at the higher temperatures used in conventional sintering.

Monson said using this method could make transformers up to 10 times smaller than they are currently. FAST enables the net-shaping of parts, meaning that iron nitride powders can be sintered directly into perfectly sized parts, such as transformer cores, which don’t require any machining, Monson said.

Due to its magnetic properties, iron nitride transformers can be made much more compact and lighter than traditional transformers, with better power-handling capability and greater efficiency. They will require only air cooling, another important space saver. Iron nitride also could serve as a more robust, high-performance transformer core material across the nation’s electrical grid.

So far, researchers have demonstrated the fabrication of iron nitride transformer cores with good physical and magnetic characteristics and are refining their process and preparing to test the transformers in power-conversion test beds.

Advanced magnetic materials are critical for next-generation power conversion systems that use high-frequency linked converters, and can complement Sandia efforts in ultra-wide bandgap device materials for improved power electronics systems, said Stan Atcitty from Sandia. They can withstand higher frequencies and higher temperatures, which ultimately result in high power density designs, Atcitty said.